Exploration of oxygen-mediated disinfection of medical devices reveals a high sensitivity of Pseudomonas aeruginosa to elevated oxygen levels

Author:

Cavallo Francis M.,Kommers Richard,Friedrich Alexander W.,Glasner Corinna,van Dijl Jan Maarten

Abstract

AbstractThe microbiological safety of medical devices is of paramount importance for patients and manufacturers alike. However, during usage medical devices will inevitably become contaminated with microorganisms, including opportunistic pathogens. This is a particular problem if these devices come in contact with body sites that carry high bacterial loads, such as the oral cavity. In the present study, we investigated whether high oxygen concentrations can be applied to disinfect surfaces contaminated with different Gram-positive and Gram-negative bacteria. We show that some opportunistic pathogens, exemplified by Pseudomonas aeruginosa, are particularly sensitive to oxygen concentrations above the atmospheric oxygen concentration of 21%. Our observations also show that high oxygen concentrations can be applied to reduce the load of P. aeruginosa on nebulizers that are used by cystic fibrosis patients, who are particularly susceptible to colonization and infection by this bacterium. We conclude that the efficacy of oxygen-mediated disinfection depends on the bacterial species, duration of oxygen exposure and the oxygen concentration. We consider these observations relevant, because gas mixtures with high oxygen content can be readily applied for microbial decontamination. However, the main challenge for oxygen-based disinfection approaches resides in a potentially incomplete elimination of microbial contaminants, which makes combined usage with other disinfectants like ethanol or hydrogen peroxide recommendable.

Funder

Horizon 2020 Framework Programme

Interreg

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3