Energy band structure of multistream quantum electron system

Author:

Akbari-Moghanjoughi M.

Abstract

AbstractIn this paper, using the quantum multistream model, we develop a method to study the electronic band structure of plasmonic excitations in streaming electron gas with arbitrary degree of degeneracy. The multifluid quantum hydrodynamic model is used to obtain N-coupled pseudoforce differential equation system from which the energy band structure of plasmonic excitations is calculated. It is shown that inevitable appearance of energy bands separated by gaps can be due to discrete velocity filaments and their electrostatic mode coupling in the electron gas. Current model also provides an alternative description of collisionless damping and phase mixing, i.e., collective scattering phenomenon within the energy band gaps due to mode coupling between wave-like and particle-like oscillations. The quantum multistream model is further generalized to include virtual streams which is used to calculate the electronic band structure of one-dimensional plasmonic crystals. It is remarked that, unlike the empty lattice approximation in free electron model, energy band gaps exist in plasmon excitations due to the collective electrostatic interactions between electrons. It is also shown that the plasmonic band gap size at first Brillouin zone boundary maximizes at the reciprocal lattice vector, G, close to metallic densities. Furthermore, the electron-lattice binding and electron-phonon coupling strength effects on the electronic band structure are discussed. It is remarked that inevitable formation of energy band structure is a general characteristics of various electromagnetically and gravitationally coupled quantum multistream systems.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference74 articles.

1. Chen, F. F. Introduction to Plasma Physics and Controlled Fusion 2nd edn. (Plenum Press, New York, London, 1984).

2. Krall, N. A. & Trivelpeice, A. W. Principles of Plasma Physics (San Francisco Press, San Francisco, 1986).

3. Kittel, C. Introduction to Solid State Physics (Wiely, New York, 1996).

4. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Saunders College Publishing, Orlando, 1976).

5. Ummethala, S. et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat. Photonics 13, 519. https://doi.org/10.1038/s41566-019-0475-6 (2019).

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3