A fast privacy-preserving patient record linkage of time series data

Author:

Soliman Ahmed,Rajasekaran Sanguthevar,Toman Patrick,Ravishanker Nalini

Abstract

AbstractRecent advances in technology have led to an explosion of data in virtually all domains of our lives. Modern biomedical devices can acquire a large number of physical readings from patients. Often, these readings are stored in the form of time series data. Such time series data can form the basis for important research to advance healthcare and well being. Due to several considerations including data size, patient privacy, etc., the original, full data may not be available to secondary parties or researchers. Instead, suppose that a subset of the data is made available. A fast and reliable record linkage algorithm enables us to accurately match patient records in the original and subset databases while maintaining privacy. The problem of record linkage when the attributes include time series has not been studied much in the literature. We introduce two main contributions in this paper. First, we propose a novel, very efficient, and scalable record linkage algorithm that is employed on time series data. This algorithm is 400× faster than the previous work. Second, we introduce a privacy preserving framework that enables health institutions to safely release their raw time series records to researchers with bare minimum amount of identifying information.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3