Prediction of habitat complexity using a trait-based approach on coral reefs in Guam

Author:

Ferreira Sofia B.,Burns John H. R.,Pascoe Kailey H.,Kapono Clifford A.,Reyes Andres J.,Fukunaga Atsuko

Abstract

AbstractScleractinian corals are primary contributors to the structural complexity of coral reef ecosystems. The structure derived from their carbonate skeletons underpins the biodiversity and myriad of ecosystem services provided by coral reefs. This study used a trait-based approach to provide new insights into the relationships between habitat complexity and coral morphology. Three-Dimensional (3D) photogrammetry techniques were used to survey 208 study plots on the island of Guam, from which structural complexity metrics were derived and physical traits of corals were quantified. Three traits at the individual colony level (e.g., morphology, size, and genera) and two site-level environmental characteristics (e.g., wave exposure and substratum-habitat type) were examined. Standard taxonomy-based metrics were also included at the reef-plot level (e.g., coral abundance, richness, and diversity). Different traits disproportionately contributed to 3D metrics of habitat complexity. Larger colonies with a columnar morphology have the highest contribution to surface complexity, slope, and vector ruggedness measure, whereas branching and encrusting columnar colonies have the highest contribution to planform and profile curvature. These results highlight the importance of considering colony morphology and size in addition to conventional taxonomic metrics for the understanding and monitoring reef structural complexity. The approach presented here provides a framework for studies in other locations to predict the trajectory of reefs under changing environmental conditions.

Funder

U.S. Department of Navy

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3