Fracture identification and characteristics of carbonate underground gas storage: an example from the eastern area of Sulige gas field, ordos Basin, China

Author:

Xie Jun,Hao Xiaofan,Zhang Yuanpei,Zhang Jianguo,Xia Yong,He Yilin

Abstract

AbstractThe carbonate rock formations have obvious dual media characteristics, fracture development and good physical conditions, which are the main seepage channels and storage spaces for gas after the reconstruction of underground gas storage. The carbonate strata of the Ordovician system are important natural gas reservoirs in the eastern area of Sulige Gas Field in the Ordos Basin, and the identification and characterization of their fractures are of great significance for the modeling of fractures in the later stage and the improvement of the operation scheme of the gas storage. At present, there is little research on fractures, which restricts exploration and development. Therefore, taking the 39–61 gas storage reservoir in the eastern area of Sulige Gas Field in the Ordos Basin as the research object, this paper identifies and studies the characteristics of the fractures by core, microscopic, conventional logging curves, and imaging logging identification. The results show that the fracture length ranges from 5 to 15 cm and the width ranges from 0.1 to 3 mm. The fracture angles are mostly between 75° and 90° and the main direction is NW–SE. In conventional logging curves, porosity logging has a good response to fractures, while resistivity logging has a general response to fractures; In layers with more developed fractures, natural gamma values are mostly higher than 40API, rock volume density is less than 2.8 g/cm3, neutron porosity is greater than 12.5%, and acoustic time difference is greater than 160 μ s/m. This study is of great significance for improving the identification of carbonate fractures, enriching the relevant theories, and providing guidance for the construction of carbonate gas storage.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3