Computational assessment of groundwater salinity distribution within coastal multi-aquifers of Bangladesh

Author:

Jamei Mehdi,Karbasi Masoud,Malik Anurag,Abualigah Laith,Islam Abu Reza Md Towfiqul,Yaseen Zaher Mundher

Abstract

AbstractThe rising salinity trend in the country’s coastal groundwater has reached an alarming rate due to unplanned use of groundwater in agriculture and seawater seeping into the underground due to sea-level rise caused by global warming. Therefore, assessing salinity is crucial for the status of safe groundwater in coastal aquifers. In this research, a rigorous hybrid neurocomputing approach comprised of an Adaptive Neuro-Fuzzy Inference System (ANFIS) hybridized with a new meta-heuristic optimization algorithm, namely Aquila optimization (AO) and the Boruta-Random forest feature selection (FS) was developed for estimating the salinity of multi-aquifers in coastal regions of Bangladesh. In this regard, 539 data samples, including ten water quality indices, were collected to provide the predictive model. Moreover, the individual ANFIS, Slime Mould Algorithm (SMA), and Ant Colony Optimization for Continuous Domains (ACOR) coupled with ANFIS (i.e., ANFIS-SMA and ANFIS-ACOR) and LASSO regression (Lasso-Reg) schemes were examined to compare with the primary model. Several goodness-of-fit indices, such as correlation coefficient (R), the root mean squared error (RMSE), and Kling-Gupta efficiency (KGE) were used to validate the robustness of the predictive models. Here, the Boruta-Random Forest (B-RF), as a new robust tree-based FS, was adopted to identify the most significant candidate inputs and effective input combinations to reduce the computational cost and time of the modeling. The outcomes of four selected input combinations ascertained that the ANFIS-OA regarding the best accuracy in terms of (R = 0.9450, RMSE = 1.1253 ppm, and KGE = 0.9146) outperformed the ANFIS-SMA (R = 0.9406, RMSE = 1.1534 ppm, and KGE = 0.8793), ANFIS-ACOR (R = 0.9402, RMSE = 1.1388 ppm, and KGE = 0.8653), Lasso-Reg (R = 0.9358), and ANFIS (R = 0.9306) models. Besides, the first candidate input combination (C1) by three inputs, including Cl (mg/l), Mg2+ (mg/l), Na+ (mg/l), yielded the best accuracy among all alternatives, implying the role importance of (B-RF) feature selection. Finally, the spatial salinity distribution assessment in the study area ascertained the high predictability potential of the ANFIS-OA hybrid with B-RF feature selection compared to other paradigms. The most important novelty of this research is using a robust framework comprised of the non-linear data filtering technique and a new hybrid neuro-computing approach, which can be considered as a reliable tool to assess water salinity in coastal aquifers.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3