Author:
Wu Jiangfeng,Ge Lifang,Guo Yinghong,Zhao Anli,Yao Jincao,Wang Zhengping,Xu Dong
Abstract
AbstractThe hormone receptor (HR) status plays a significant role in breast cancer, serving as the primary guide for treatment decisions and closely correlating with prognosis. This study aims to investigate the predictive value of radiomics analysis in long-axis and short-axis ultrasound planes for distinguishing between HR-positive and HR-negative breast cancers. A cohort of 505 patients from two hospitals was stratified into discovery (Institute 1, 416 patients) and validation (Institute 2, 89 patients) cohorts. A comprehensive set of 788 ultrasound radiomics features was extracted from both long-axis and short-axis ultrasound planes, respectively. Utilizing least absolute shrinkage and selection operator (LASSO) regression analysis, distinct models were constructed for the long-axis and short-axis data. Subsequently, radiomics scores (Rad-scores) were computed for each patient. Additionally, a combined model was formulated by integrating data from long-axis and short-axis Rad-scores along with clinical factors. The diagnostic efficacy of all models was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC). The long-axis and short-axis models, consisting of 11 features and 15 features, respectively, were established, yielding AUCs of 0.743 and 0.751 in the discovery cohort, and 0.795 and 0.744 in the validation cohort. The calculated long-axis and short-axis Rad-scores exhibited significant differences between HR-positive and HR-negative groups across all cohorts (all p < 0.001). Univariate analysis identified ultrasound-reported tumor size as an independent predictor. The combined model, incorporating long-axis and short-axis Rad-scores along with tumor size, achieved superior AUCs of 0.788 and 0.822 in the discovery and validation cohorts, respectively. The combined model effectively distinguishes between HR-positive and HR-negative breast cancers based on ultrasound radiomics features and tumor size, which may offer a valuable tool to facilitate treatment decision making and prognostic assessment.
Funder
Jinhua Science and Technology Bureau
Research Program of National Health Commision Capacity Building and Continuing Education Center
Publisher
Springer Science and Business Media LLC