Deep phenotype unsupervised machine learning revealed the significance of pachychoroid features in etiology and visual prognosis of age-related macular degeneration

Author:

Hosoda Yoshikatsu,Miyake Masahiro,Yamashiro Kenji,Ooto Sotaro,Takahashi Ayako,Oishi Akio,Miyata Manabu,Uji Akihito,Muraoka Yuki,Tsujikawa Akitaka

Abstract

Abstract Unsupervised machine learning has received increased attention in clinical research because it allows researchers to identify novel and objective viewpoints for diseases with complex clinical characteristics. In this study, we applied a deep phenotyping method to classify Japanese patients with age-related macular degeneration (AMD), the leading cause of blindness in developed countries, showing high phenotypic heterogeneity. By applying unsupervised deep phenotype clustering, patients with AMD were classified into two groups. One of the groups had typical AMD features, whereas the other one showed the pachychoroid-related features that were recently identified as a potentially important factor in AMD pathogenesis. Based on these results, a scoring system for classification was established; a higher score was significantly associated with a rapid improvement in visual acuity after specific treatment. This needs to be validated in other datasets in the future. In conclusion, the current study demonstrates the usefulness of unsupervised classification and provides important knowledge for future AMD studies.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3