Development and internal validation of an algorithm to predict intraoperative risk of inadvertent hypothermia based on preoperative data

Author:

Wallisch C.,Zeiner S.,Scholten P.,Dibiasi C.,Kimberger O.

Abstract

AbstractIntraoperative hypothermia increases perioperative morbidity and identifying patients at risk preoperatively is challenging. The aim of this study was to develop and internally validate prediction models for intraoperative hypothermia occurring despite active warming and to implement the algorithm in an online risk estimation tool. The final dataset included 36,371 surgery cases between September 2013 and May 2019 at the Vienna General Hospital. The primary outcome was minimum temperature measured during surgery. Preoperative data, initial vital signs measured before induction of anesthesia, and known comorbidities recorded in the preanesthetic clinic (PAC) were available, and the final predictors were selected by forward selection and backward elimination. Three models with different levels of information were developed and their predictive performance for minimum temperature below 36 °C and 35.5 °C was assessed using discrimination and calibration. Moderate hypothermia (below 35.5 °C) was observed in 18.2% of cases. The algorithm to predict inadvertent intraoperative hypothermia performed well with concordance statistics of 0.71 (36 °C) and 0.70 (35.5 °C) for the model including data from the preanesthetic clinic. All models were well-calibrated for 36 °C and 35.5 °C. Finally, a web-based implementation of the algorithm was programmed to facilitate the calculation of the probabilistic prediction of a patient’s core temperature to fall below 35.5 °C during surgery. The results indicate that inadvertent intraoperative hypothermia still occurs frequently despite active warming. Additional thermoregulatory measures may be needed to increase the rate of perioperative normothermia. The developed prediction models can support clinical decision-makers in identifying the patients at risk for intraoperative hypothermia and help optimize allocation of additional thermoregulatory interventions.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3