Water-dispersable photoreactors based on core–shell mesoporous silica particles

Author:

Baliś Andrzej,Lorens Dominika,Gut Arkadiusz,Zapotoczny Szczepan

Abstract

AbstractRobust solid-core silica particles with submicrometer size and anthracene-containing mesoporous shell were obtained and studied as model water-dispersable photoreactors. An anthracene derivative containing a triethoxysilyl group was synthesized and co-condensed with tetraethoxysilane in various ratios to form a photoactive mesoporous shell with a thickness up to approximately 80 nm on previously prepared solid silica particles. Mesopores of as-synthesized particles, without a commonly applied removal of the micellar templates, offered a confined space for solubilization of hydrophobic molecules. Efficient excitation energy transfer from anthracene chromophores to both hydrophobic (perylene) and hydrophilic (fluoresceine) encapsulated acceptors was observed in an aqueous dispersion of the particles. Photosensitized oxidation of encapsulated perylene was shown to proceed efficiently in such systems serving as water-dispersable photoreactors. Importantly, the designed core–shell systems were found to be stable for a long time (at least 24 months) and robust enough, thanks to the presence of solid cores, to be handled by centrifugation in aqueous dispersions. All these features make them promising candidates for reusable systems for the photosensitized degradation of water pollutants, especially hydrophobic pollutants.

Funder

Foundation for Polish Science

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3