Solid Sorbents as a Retrofit Technology for CO2 Removal from Natural Gas Under High Pressure and Temperature Conditions

Author:

Khraisheh Majeda,Almomani Fares,Walker Gavin

Abstract

AbstractThe capture of CO2 under high pressure and temperature is challenging and is required in a number for industrial applications including natural gas processing. In this work, we examine the use of benchmark hybrid ultraporous materials HUMs for their potential use in CO2 adsorption processes under high-pressure conditions, with three varying temperatures (283, 298 and 318 K). NbOFFOVE-1-Ni and SIFSIX-3-Ni were the selected HUMs given their established superior CO2 capacity under low pressure (0–1 bar). Both are microporous with highly ordered crystalline structures as compared to the mesoporous hexagonal silica (Santa Barbara Anhydrous-15 (SBA-15)). SBA-15 was previously tested for both low and high-pressure applications and can serve as a benchmark in this study. Sorbent characterization using XRD, SEM, FTIR and N2 adsorption were conducted to assure the purity and structure of the sorbents. TGA analysis were conducted to establish the thermal stability of the sorbents under various temperatures. High-pressure CO2 adsorption was conducted from 0–35 bar using magnetic suspension balance (Rubotherm). Although the SBA-15 had the highest surface (527 m3/g) are of the three adsorbents, the CO2 adsorption capacity (0.42 mmol/g) was an order of magnitude less than the studies HUMs with SIFSIX-3-Ni having 2.6 mmol/g, NbOFFIVE-1-Ni achieving 2.5 mmol/g at 298 K. Multistage adsorption isotherms were obtained at different pressures. In addition, results indicate that electrostatics in HUMs are most effective at improving isosteric heat of adsorption Qst and CO2 uptake. Higher temperatures had negative effect on adsorption capacity for the HUMs and SBA-15 at pressures between 7–9 bar. In SAB-15 the effect of temperature is reversed in what is known as a cross over phenomena.

Funder

Qatar Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3