Antimicrobial activity of cell free supernatants from probiotics inhibits against pathogenic bacteria isolated from fresh boar semen

Author:

Keeratikunakorn KrittikaORCID,Kaewchomphunuch ThotsapolORCID,Kaeoket KamponORCID,Ngamwongsatit NatharinORCID

Abstract

AbstractThe use of antibiotics with semen extender appears to be a practical solution to minimise bacterial growth in fresh boar semen preservation. Unfortunately, the excessive use of antibiotics promotes antimicrobial resistance (AMR). This becomes a worldwide concern due to the antimicrobial resistance genes transmitted to animals, environment, and humans. Probiotics are one of the alternative methods to reduce antibiotic use. They could inhibit pathogenic bacteria by producing antimicrobial substances in cell free supernatants (CFS). Nevertheless, there is no comprehensive study undertaken on inhibitory activity against pathogenic bacteria isolated from boar semen origin. Our study investigated the efficacy of CFS produced from selected probiotics: Bacillus spp., Enterococcus spp., Weissella spp., Lactobacillus spp., and Pediococcus spp. inhibiting pathogenic bacteria isolated from fresh boar semen. Besides, the semen-origin pathogenic bacteria are subjected to identification, antimicrobial resistance genes detection, and antibiotic susceptibility test (AST). Pseudomonas aeruginosa, Escherichia coli, and Proteus mirabilis are the most common pathogens identified in boar semen with resistance to numerous antibiotics used in pig industry. The CFS with its antimicrobial peptides and/or bacteriocin constituent derived from selected probiotics could inhibit the growth of pathogenic bacteria carrying antimicrobial resistance genes (mcr-3 and int1 genes). The inhibition zones for Pseudomonas aeruginosa, Escherichia coli, and Proteus mirabilis provided more efficient results in the CFS derived from Lactobacillus spp. and Pediococcus spp. than those of the CFS produced from Enterococcus spp., Weissella spp. and Bacillus spp., respectively. It is worth noted that as the incubation time increased, the antibacterial activity decreased conversely. Our results on CFS with its antimicrobial peptides and/or bacteriocin constituent inhibits semen-origin pathogenic bacteria guide the direction as a promising alternative method used in the semen extender preservation of the pig industry.

Funder

National Research Council of Thailand

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3