The enigmatic 1693 AD tsunami in the eastern Mediterranean Sea: new insights on the triggering mechanisms and propagation dynamics

Author:

Scicchitano Giovanni,Gambino Salvatore,Scardino Giovanni,Barreca Giovanni,Gross Felix,Mastronuzzi Giuseppe,Monaco Carmelo

Abstract

AbstractThe disastrous earthquake of 1693 AD caused over 60,000 causalities and the total destruction of several villages and towns in south-eastern Sicily. Immediately after the earthquake, a tsunami struck the Ionian coasts of Sicily and the Messina Strait and was probably recorded even in the Aeolian Islands and Malta. Over the last few decades, the event has been much debated regarding the location of the seismogenic source and the possible cause of the associated tsunami. The marine event has been related to both a submarine landslide and a coseismic displacement at the seafloor. To better define the most reliable sources and dynamics of the tsunami, we couple high-resolution marine seismic survey data with hydrodynamic modelling to simulate various scenarios of tsunami generation and propagation. Results from the simulations are compared with geomorphological evidence of past tsunami impacts, described in previous work along the coast of south-eastern Sicily, and within historical chronicles and reports. The most reliable scenario considers the 1693 event composed by two different tsunami waves: a first wave generated by the coseismic fault displacement at the seafloor and a second wave generated by a submarine landslide, triggered by the earthquake shaking. Tsunami modelling shows that a simultaneous movement between fault displacement and submarine mass movement could determine a destructive interference on the tsunami waves, resulting in a reduction in wave height. For this reason, the second tsunami wave probably occurred with a maximum delay of few minutes after the one generated by the earthquake and induced a greater flooding. The double-source model could explain the observation because in the course of other destructive earthquakes in south-eastern Sicily, such as that of 1169 AD, the associated tsunami caused less damages. This implies the need to better map, define and assess the hazard responsible for this type of tsunami events.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3