Transcriptome sequencing of garlic reveals key genes related to the heat stress response

Author:

Yang Qing-Qing,Yang Feng,Liu Can-Yu,Zhao Yong-Qiang,Li Meng-Yao,Lu Xin-Juan,Ge Jie,Zhang Bi-Wei,Li Meng-Qian,Yang Yan,Fan Ji-De

Abstract

AbstractWith global warming, heat stress has become an important factor that seriously affects crop yield and quality. Therefore, understanding plant responses to heat stress is important for agricultural practice, but the molecular mechanism of high-temperature tolerance in garlic remains unclear. In this study, ‘Xusuan No. 6’ was used as the experimental material. After heat stress for 0 (CK), 2 and 24 h, transcriptome sequencing was used to screen metabolic pathways and differentially expressed genes (DEGs) closely related to heat stress and was further verified by quantitative real-time polymerase chain reaction (qRT-PCR). A total of 86,110 unigenes obtained from the raw transcriptome sequencing data were spliced. After 2 h of heat treatment, the expression levels of 8898 genes increased, and 3829 genes were decreased in leaves. After 24 h, the expression levels of 7167 genes were upregulated, and 3176 genes were downregulated. Gene Ontology enrichment analysis showed that DEGs were mainly enriched in seven categories: cellular processes, metabolic processes, binging, catalytic activity, cellular anatomical entity and protein-containing complex response to stimulus. Kyoto Encyclopedia of Genes and Genomes pathway enrichment showed that DEGs are involved in protein processing in the endoplasmic reticulum, plant hormone signal transduction, phenylpropanoid biosynthesis, and photosynthetic antenna proteins. Six genes were selected and further verified by qRT-PCR. In this study, the full-length transcriptome of garlic was constructed, and the regulatory genes related to the heat resistance of garlic were studied. Taken together, these findings can provide a theoretical basis for the cloning of heat resistance genes in garlic and for the analysis of heat resistance mechanisms.

Funder

China Agriculture Research System

Xuzhou science and technology project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3