Transcriptome analysis and phenotyping of walnut seedling roots under nitrogen stresses

Author:

Song Yan,Zhang Rui,Gao Shan,Pan Zhiyong,Guo Zhongzhong,Yu Shangqi,Wang Yu,Jin Qiang,Chen Xiaofei,Zhang Lei

Abstract

AbstractNitrogen is an essential core element in walnut seedling growth and development. However, nitrogen starvation and excessive nitrogen stress can cause stunted growth and development of walnut seedlings, and environmental pollution is also of concern. Therefore, it is necessary to study the mechanism of walnut seedling resistance to nitrogen stress. In this study, morphological and physiological observations and transcriptome sequencing of walnut seedlings under nitrogen starvation and excess nitrogen stress were performed. The results showed that walnut seedlings under nitrogen starvation and excess stress could adapt to the changes in the nitrogen environment by changing the coordination of their root morphology and physiological indexes. Based on an analysis of transcriptome data, 4911 differential genes (DEGs) were obtained (2180 were upregulated and 2731 were downregulated) in a comparison of nitrogen starvation and control groups. A total of 9497 DEGs (5091 upregulated and 4406 downregulated) were obtained in the comparison between the nitrogen overdose and control groups. When these DEGs were analysed, the differential genes in both groups were found to be significantly enriched in the plant’s circadian pathway. Therefore, we selected the circadian rhythm as the focus for further analysis. We made some discoveries by analysing the gene co-expression network of nitrogen metabolism, circadian rhythm, and hormone signal transduction. (a) Nitrite nitrogen (NO2) or Glu may act as a nitrogen signal to the circadian clock. (b) Nitrogen signalling may be input into the circadian clock by regulating changes in the abundance of the CRY1 gene. (c) After the nitrogen signal enters the circadian clock, the expression of the LHY gene is upregulated, which causes a phase shift in the circadian clock. (d) The RVE protein may send information about the circadian clock’s response to nitrogen stress back to the nitrogen metabolic pathway via the hormone transduction pathway. In conclusion, various metabolic pathways in the roots of walnut seedlings coordinated with one another to resist the ill effects of nitrogen stress on the root cells, and these coordination relationships were regulated by the circadian clock. This study is expected to provide valuable information on the circadian clock regulation of plant resistance to nitrogen stress.

Funder

Key Industry Innovation and Development Support Plan project of Xinjiang Production and Construction Corps in Southern Xinjiang

XPCC benefit people project

Major Projects for Regional development in Xinjiang

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference44 articles.

1. Zhang, R. et al. Development of Juglans Regia SSR markers by data mining of the EST database. Plant Mol. Biol. Rep. 28, 646–653 (2010).

2. FAO. FAO STATISIC walnut production and yield [EB/OL]. [2020–11–08] http://www.fao.org/faostat/zh/#data (2020).

3. Li, Z. et al. The development of walnut mechanization of production equipment in Xin Jiang. Xinjiang Agric. Sci. 51, 973–980 (2014).

4. Li, Y., Ma, W., Zhu, Z., Liu, K. & Tian, X. Xinjiang Walnut industry: The development status and countermeasures. J. Agric. 9, 80–86 (2019).

5. Chen, Y., Ruberson, J. R. & Olson, D. M. Nitrogen fertilization rate affects feeding, larval performance, and oviposition preference of the beet armyworm, Spodoptera exigua, on cotton. Entomol. Exp. Appl. 126, 244–255 (2008).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3