Biometric authentication security enhancement under quantum dot light-emitting diode display via fingerprint imaging and temperature sensing

Author:

Jung HanyungORCID,Sim Soobin,Lee Hyunkoo

Abstract

AbstractWe improved biometric authentication security using dual recognition based on fingerprint image detection and skin-temperature-change sensing under quantum dot light-emitting diode (QLED) displays. QLEDs are more advantageous than organic light-emitting diodes (OLEDs) in terms of the contrast classification of patterns such as those in fingerprint recognition, owing to their narrow full-width-half-maximum. In this work, scattered, transmitted, and reflected light was captured from the top of the QLED, improving the digital luminance by 25%, as compared with that of OLEDs, because the electroluminescence spectra of the QLED were sustained, whereas those of the OLED were distorted by the generated noise peaks. A QLED with eight apertures sized up to tens of micrometers, mimicking the actual wiring structure of commercialized smartphones, was implemented to detect human fingerprints. The QLED using reduced graphene oxide as the temperature sensor detected temperature changes instantaneously upon finger touch, showing a 2% temperature response based on the human body temperature; however, the temperature change was less than 0.1% for spoof fingerprints printed on paper. Thus, this study successfully enhanced biometric authentication security, through fingerprint recognition based on image sensing using an optical system with micrometer-sized apertures and skin-temperature detection under QLED displays.

Funder

Korea Evaluation Institute of Industrial Technology

National Research Foundation of Korea

Institute for Information and Communications Technology Promotion

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3