Machine learning screening of bile acid-binding peptides in a peptide database derived from food proteins

Author:

Imai Kento,Shimizu Kazunori,Honda Hiroyuki

Abstract

AbstractBioactive peptides (BPs) are protein fragments that exhibit a wide variety of physicochemical properties, such as basic, acidic, hydrophobic, and hydrophilic properties; thus, they have the potential to interact with a variety of biomolecules, whereas neither carbohydrates nor fatty acids have such diverse properties. Therefore, BP is considered to be a new generation of biologically active regulators. Recently, some BPs that have shown positive benefits in humans have been screened from edible proteins. In the present study, a new BP screening method was developed using BIOPEP-UWM and machine learning. Training data were initially obtained using high-throughput techniques, and positive and negative datasets were generated. The predictive model was generated by calculating the explanatory variables of the peptides. To understand both site-specific and global characteristics, amino acid features (for site-specific characteristics) and peptide global features (for global characteristics) were generated. The constructed models were applied to the peptide database generated using BIOPEP-UWM, and bioactivity was predicted to explore candidate bile acid-binding peptides. Using this strategy, seven novel bile acid-binding peptides (VFWM, QRIFW, RVWVQ, LIRYTK, NGDEPL, PTFTRKL, and KISQRYQ) were identified. Our novel screening method can be easily applied to industrial applications using whole edible proteins. The proposed approach would be useful for identifying bile acid-binding peptides, as well as other BPs, as long as a large amount of training data can be obtained.

Funder

JSPS KAKENHI

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3