A comprehensive study of the shielding ability from ionizing radiation of different mortars using iron filings and bismuth oxide

Author:

Al-Saleh Wafa M.,Elsafi Mohamed,Almutairi Haifa M.,Nabil Islam M.,El-Nahal M. A.

Abstract

AbstractThe current work discusses the radiation attenuation capability and different shielding characteristics of different mortar samples. The samples were prepared by replacing different percentages of fine aggregate with iron filling and replacing different percentages of hydrated lime with Bi2O3 (0–50 wt.%). The prepared mortar samples are coded as CHBFX where X = 0, 10, 30, and 50 wt.%. The mass and linear attenuation coefficient was determined experimentally using a narrow beam technique, where a high purity germanium detector, and different point gamma-ray sources (such as Am-241, Cs-137, and Co-60). The linear attenuation coefficient was also calculated using the Monte-Carlo simulation code and the online Phy-X/PSD software. The comparison of the three methods showed a good agreement in the results. The linear attenuation coefficient drops from 19.821 to 0.053 cm−1 for CHBF0, from 27.496 to 0.057 cm−1 for CHBF10, from 42.351 to 0.064 cm−1 for CHBF30, and from 55.068 to 0.071 cm−1 for CHBF50 at photon energy range from 0.015 to 15 MeV. The half-value layer thickness, tenth-value layer thickness, and mean free path of the prepared mortar composites were also calculated photon energy ranged from 0.015 to 15 MeV. The fast neutron removal cross-section of the prepared CHBFX mortar samples have values of 0.096 cm−1, 0.098 cm−1, 0.103 cm−1, and 0.107 cm−1 for the mortar samples CHBF0, CHBF10, CHBF30, and CHBF50, respectively. The results showed that the mortar sample with the highest iron filing concentration, CHBF50, provides the best protection against gamma rays and fast neutrons which could be used in the nuclear and medical fields.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3