Author:
Zhang Jiang,Teng Xinzhi,Zhang Xinyu,Lam Sai-Kit,Lin Zhongshi,Liang Yongyi,Yu Hao,Siu Steven Wai Kwan,Chang Amy Tien Yee,Zhang Hua,Kong Feng-Ming,Yang Ruijie,Cai Jing
Abstract
AbstractImage perturbation is a promising technique to assess radiomic feature repeatability, but whether it can achieve the same effect as test–retest imaging on model reliability is unknown. This study aimed to compare radiomic model reliability based on repeatable features determined by the two methods using four different classifiers. A 191-patient public breast cancer dataset with 71 test–retest scans was used with pre-determined 117 training and 74 testing samples. We collected apparent diffusion coefficient images and manual tumor segmentations for radiomic feature extraction. Random translations, rotations, and contour randomizations were performed on the training images, and intra-class correlation coefficient (ICC) was used to filter high repeatable features. We evaluated model reliability in both internal generalizability and robustness, which were quantified by training and testing AUC and prediction ICC. Higher testing performance was found at higher feature ICC thresholds, but it dropped significantly at ICC = 0.95 for the test–retest model. Similar optimal reliability can be achieved with testing AUC = 0.7–0.8 and prediction ICC > 0.9 at the ICC threshold of 0.9. It is recommended to include feature repeatability analysis using image perturbation in any radiomic study when test–retest is not feasible, but care should be taken when deciding the optimal feature repeatability criteria.
Funder
Innovation and Technology Fund - Mainland-Hong Kong Joint Funding Scheme
Shenzhen Basic Research Program
Shenzhen-Hong Kong-Macau S&T Program
Project of Strategic Importance Fund
Projects of RISA
Health and Medical Research Fund
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献