The impact of substrate stiffness on morphological, transcriptional and functional aspects in RPE

Author:

Wolfram LasseORCID,Gimpel Clara,Schwämmle Melanie,Clark Simon J.,Böhringer Daniel,Schlunck Günther

Abstract

AbstractAlterations in the structure and composition of Bruch’s membrane (BrM) and loss of retinal pigment epithelial (RPE) cells are associated with various ocular diseases, notably age-related macular degeneration (AMD) as well as several inherited retinal diseases (IRDs). We explored the influence of stiffness as a major BrM characteristic on the RPE transcriptome and morphology. ARPE-19 cells were plated on soft ($$E={30}\,\hbox {kPa}$$ E = 30 kPa ) or stiff ($$E={80}\,\hbox {kPa}$$ E = 80 kPa ) polyacrylamide gels (PA gels) or standard tissue culture plastic (TCP). Next-generation sequencing (NGS) data on differentially expressed small RNAs (sRNAs) and messenger RNAs (mRNAs) were validated by qPCR, immunofluorescence or western blotting. The microRNA (miRNA) fraction of sRNAs grew with substrate stiffness and distinct miRNAs such as miR-204 or miR-222 were differentially expressed. mRNA targets of differentially expressed miRNAs were stably expressed, suggesting a homeostatic effect of miRNAs. mRNA transcription patterns were substrate stiffness-dependent, including components of Wnt/beta-catenin signaling, Microphthalmia-Associated Transcription Factor (MITF) and Dicer. These findings highlight the relevance of mechanical properties of the extracellular matrix (ECM) in cell culture experiments, especially those focusing on ECM-related diseases, such as AMD.

Funder

Freunde der Universitäts-Augenklinik Freiburg e.V.

Projekt DEAL

Universitätsklinikum Freiburg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3