Novel humidity sensors based on nanomodified Portland cement

Author:

Buasiri Thanyarat,Habermehl-Cwirzen Karin,Krzeminski Lukasz,Cwirzen Andrzej

Abstract

AbstractCommonly used humidity sensors are based on metal oxides, polymers or carbon. Their sensing accuracy often deteriorates with time, especially when exposed to higher temperatures or very high humidity. An alternative solution based on the utilization of Portland cement-based mortars containing in-situ grown carbon nanofibers (CNFs) was evaluated in this study. The relationship between the electrical resistivity, CNF content and humidity were determined. The highest sensitivity was observed for samples containing 10 wt.% of the nanomodified cement which corresponded to 0.27 wt.% of CNFs. The highest calculated sensitivity was approximately 0.01024 per 1% change in relative humidity (RH). The measured electrical resistivity is a linear function of the RH in the humidity range between 11 and 97%. The percolation threshold value was estimated to be at around 7 wt.% of the nanomodified cement, corresponding to ~ 0.19 wt.% of CNFs.

Funder

VINNOVA

Trafikverket

Lulea University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3