Insights into particle dispersion and damage mechanisms in functionally graded metal matrix composites with random microstructure-based finite element model

Author:

Naguib M. E.,Gad S. I.,Megahed M.,Agwa M. A.

Abstract

AbstractThis study investigates the impact of $$\mathrm {Al_2O_3}$$ Al 2 O 3 particle volume fraction and distribution on the deformation and damage of particle-reinforced metal matrix composites, particularly in the context of functionally graded metal matrix composites. In this study, a two-dimensional nonlinear random microstructure-based finite element modeling approach implemented in ABAQUS/Explicit with a Python-generated script to analyze the deformation and damage mechanisms in $$\mathrm{AA6061\mbox{-}T6/Al_2O_{3}}$$ AA 6061 - T 6 / Al 2 O 3 composites. The plastic deformation and ductile cracking of the matrix are captured using the Gurson–Tvergaard–Needleman model, whereas particle fracture is modelled using the Johnson–Holmquist II model. Matrix-particle interface decohesion is simulated using the surface-based cohesive zone method. The findings reveal that functionally graded metal matrix composites exhibit higher hardness values ($$\textrm{HRB}$$ HRB ) than traditional metal matrix composites. The results highlight the importance of functionally graded metal matrix composites. Functionally graded metal matrix composites with a Gaussian distribution and a particle volume fraction of 10% achieve $$\textrm{HRB}$$ HRB values comparable to particle-reinforced metal matrix composites with a particle volume fraction of 20%, with only a 2% difference in $$\textrm{HRB}$$ HRB . Thus, $$\textrm{HRB}$$ HRB can be improved significantly by employing a low particle volume fraction and incorporating a Gaussian distribution across the material thickness. Furthermore, functionally graded metal matrix composites with a Gaussian distribution exhibit higher $$\textrm{HRB}$$ HRB values and better agreement with experimental distribution functions when compared to those with a power-law distribution.

Funder

Zagazig University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3