A novel technology to integrate imaging and clinical markers for non-invasive diagnosis of lung cancer

Author:

Shaffie Ahmed,Soliman Ahmed,Fu Xiao-An,Nantz Michael,Giridharan Guruprasad,van Berkel Victor,Khalifeh Hadil Abu,Ghazal Mohammed,Elmaghraby Adel,El-baz Ayman

Abstract

AbstractThis study presents a non-invasive, automated, clinical diagnostic system for early diagnosis of lung cancer that integrates imaging data from a single computed tomography scan and breath bio-markers obtained from a single exhaled breath to quickly and accurately classify lung nodules. CT imaging and breath volatile organic compounds data were collected from 47 patients. Spherical Harmonics-based shape features to quantify the shape complexity of the pulmonary nodules, 7th-Order Markov Gibbs Random Field based appearance model to describe the spatial non-homogeneities in the pulmonary nodule, and volumetric features (size) of pulmonary nodules were calculated from CT images. 27 VOCs in exhaled breath were captured by a micro-reactor approach and quantied using mass spectrometry. CT and breath markers were input into a deep-learning autoencoder classifier with a leave-one-subject-out cross validation for nodule classification. To mitigate the limitation of a small sample size and validate the methodology for individual markers, retrospective CT scans from 467 patients with 727 pulmonary nodules, and breath samples from 504 patients were analyzed. The CAD system achieved 97.8% accuracy, 97.3% sensitivity, 100% specificity, and 99.1% area under curve in classifying pulmonary nodules.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference36 articles.

1. American Cancer Society. Cancer Facts and Figures (American Cancer Society, Providence, 2019).

2. Investigators, I. E. L. C. A. P. Survival of patients with stage I lung cancer detected on CT screening. N. Engl. J. Med. 355, 1763–1771 (2006).

3. Molina, J. R., Yang, P., Cassivi, S. D., Schild, S. E. & Adjei, A. A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. In Mayo Clinic Proceedings Vol. 83 584–594 (Elsevier, Amsterdam, 2008).

4. Midthun, D. E. Early diagnosis of lung cancer. F1000prime reports 5 (2013).

5. Ries, L. A. G. et al. Cancer survival among adults: Us seer program, 1988–2001. Patient and tumor characteristics SEER Survival Monograph Publication 07–6215 (2007).

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3