Spatially- and vector-resolved momentum flux lost to a wall in a magnetic nozzle rf plasma thruster

Author:

Takahashi Kazunori,Sugawara Takeharu,Ando Akira

Abstract

AbstractMost of the artificial low-pressure plasmas contact with physical walls in laboratories; the plasma loss at the wall significantly affects the plasma device performance, e.g., an electric propulsion device. Near the surface of the wall, ions are spontaneously accelerated by a sheath and deliver their momentum and energy to the wall, while most of the electrons are reflected there. The momentum flux of the ions is a vector field, i.e., having both the radial and axial components even if the azimuthal components are neglected in a cylindrical system. Here the spatially- and vector-resolved measurement of the momentum flux near the cylindrical source wall of a magnetic nozzle radiofrequency (rf) plasma thruster configuration is successfully demonstrated by using a momentum vector measurement instrument. The results experimentally identify the spatial profile of a non-negligible axial momentum flux to the wall, while the radially accelerated ions seem to be responsible for the energy loss to the wall. The spatial profiles of the radial and axial momentum fluxes and the energy lost to the wall are significantly affected by the magnetic field strength. The results contribute to understand how and where the momentum and energy in the artificial plasma devices are lost, in addition to the presently tested thruster.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3