Changing surface ocean circulation caused the local demise of echinoid Scaphechinus mirabilis in Taiwan during the Pleistocene–Holocene transition
-
Published:2022-05-17
Issue:1
Volume:12
Page:
-
ISSN:2045-2322
-
Container-title:Scientific Reports
-
language:en
-
Short-container-title:Sci Rep
Author:
Ho Sze Ling,Wang Jia-Kang,Lin Yu-Jou,Lin Ching-Ren,Lee Chen-Wei,Hsu Chia-Hsin,Chang Lo-Yu,Wu To-Hsiang,Tseng Chien-Chia,Wu Hsiao-Jou,John Cédric M.,Oji Tatsuo,Liu Tsung-Kwei,Chen Wen-Shan,Li Peter,Fang Jiann-Neng,Lin Jih-Pai
Abstract
AbstractAbundant fossil specimens of Scaphechinus mirabilis, now occurring mostly in temperate waters, have been found in the Toukoshan Formation (Pleistocene) in Miaoli County, Taiwan. Environmental changes leading to its extirpation (local extinction) have thus far been elusive. Here, we reconstruct past environmental and oceanic conditions off northwest Taiwan by analyzing clumped isotopes, as well as stable oxygen isotopes, of well-preserved fossil echinoid tests collected from the Toukoshan Formation. Radiocarbon dates suggest that these samples are from Marine Isotope Stage 3 (MIS 3). Paleotemperature estimates based on clumped isotopes indicate that fossil echinoids were living in oceanic conditions that range from 9 to 14 °C on average, comparable with the estimate derived for a modern sample from Mutsu Bay, Japan. Notably, this temperature range is ~ 10 °C colder than today’s conditions off northwest Taiwan. The substantially lower temperatures during ~ 30 ka (MIS 3) compared to the modern conditions might be due to the rerouting of surface currents off northwest Taiwan when the sea level was ~ 60 m lower than today, in addition to the cooling caused by a lower atmospheric CO2 level during the Last Glacial Period. Colder waters brought here by the China Coastal Current (CCC) and the existence of shallow subtidal zones termed “Miaoli Bay” (mainly located in the present-day Miaoli county) during MIS 3 plausibly sustained generations of S. mirabilis, yielding tens of thousands of fossil specimens in the well-preserved fossil beds. The likely extirpation driver is the drastic change from a temperate climate to much warmer conditions in the shallow sea during the Pleistocene–Holocene transition.
Funder
Taiwan-ROC Ministry of Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Reference46 articles.
1. Hu, C.-H. in Introduction to Roadside Geology of Ten Field Geology Excursion Routes in Northern Taiwan (ed Taiwan Normal University Department of Earth Science) 63–100 (Taiwan Normal University, 1987).
2. Hu, C.-H. Fossil molluscs of Tongxiao Formation (Pleistocene), Longgang area, Miaoli County. Atlas Fossil Mollusca Taiwan 2, 689–754 (1992).
3. Hu, C.-H. Fossil molluscs of Tongxiao Formation (Pleistocene) in Baishatun and Touwo, Tongxiao village, Miaoli County. Atlas Fossil Mollusca Taiwan 1, 175–314 (1991).
4. Hayasaka, I. & Morishita, A. Notes on some fossil echinoids of Taiwan, II. Acta Geol. Taiwan. 1, 93–110 (1947).
5. Lin, Y.-J., Fang, J.-N., Chang, C.-C., Cheng, C.-C. & Lin, J. P. Stereomic microstructure of Clypeasteroida in thin section based on new material from Pleistocene strata in Taiwan. Terr. Atmos. Ocean. Sci. J. https://doi.org/10.3319/TAO.2021.07.28.01 (2021).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献