An enhanced real-time human pose estimation method based on modified YOLOv8 framework

Author:

Dong Chengang,Du Guodong

Abstract

AbstractThe objective of human pose estimation (HPE) derived from deep learning aims to accurately estimate and predict the human body posture in images or videos via the utilization of deep neural networks. However, the accuracy of real-time HPE tasks is still to be improved due to factors such as partial occlusion of body parts and limited receptive field of the model. To alleviate the accuracy loss caused by these issues, this paper proposes a real-time HPE model called $${\textbf {CCAM-Person}}$$ CCAM - Person based on the YOLOv8 framework. Specifically, we have improved the backbone and neck of the YOLOv8x-pose real-time HPE model to alleviate the feature loss and receptive field constraints. Secondly, we introduce the context coordinate attention module (CCAM) to augment the model’s focus on salient features, reduce background noise interference, alleviate key point regression failure caused by limb occlusion, and improve the accuracy of pose estimation. Our approach attains competitive results on multiple metrics of two open-source datasets, MS COCO 2017 and CrowdPose. Compared with the baseline model YOLOv8x-pose, CCAM-Person improves the average precision by 2.8% and 3.5% on the two datasets, respectively.

Publisher

Springer Science and Business Media LLC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Visual Detection of Traffic Incident through Automatic Monitoring of Vehicle Activities;World Electric Vehicle Journal;2024-08-23

2. U-GMo: Individual Clip Detection from a Graduation Ceremony Video;2024 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC);2024-07-02

3. Recognition of Hand-Drawn Designs of Electronic Analog Circuits;2024 9th International Conference on Smart and Sustainable Technologies (SpliTech);2024-06-25

4. Deep Learning Realizes Photoacoustic Imaging Artifact Removal;Applied Sciences;2024-06-13

5. Estimation of Shoulder Joint Rotation Angle Using Tablet Device and Pose Estimation Artificial Intelligence Model;Sensors;2024-05-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3