Structure improvement and parameter optimization of micro flow control valve

Author:

Qu Guodong,Li Jianying,Peng Chen,Guo Qi

Abstract

AbstractAiming at the sticking phenomenon between the valve core and the valve sleeve when the valve core moves, and to solve the problem that the torque required to drive the valve core to rotate is large, the fluid–solid coupling simulation analysis of the valve core is carried out in this study, and then the valve core structure of the valve core is improved and its parameters are optimized based on the bird colony algorithm. The combination structure of the valve sleeve and valve core is studied, and the fluid–solid coupling model is established by Ansys WorkBench, and the static structure simulation analysis of valve sleeve and valve core before and after structural improvement and parameter optimization is performed. The mathematical models of triangular buffer tank, U-shaped buffer tank and combined buffer tank are established, and the structural parameters of the combined buffer tank are optimized by bird swarm optimization. The results demonstrate the triangular buffer tank has good depressurization effect but great impact, the pressure of the U-shaped buffer tank is stable and gentle but the depressurization effect is not ideal, while the combined buffer tank has obvious depressurization effect and good stability. At the same time, the optimal structural parameters of the combined buffer tank are cut-in angle of 72, plane angle of 60 and depth of 1.65 mm. The excellent structure and parameters of the combined buffer groove are obtained, so that the pressure buffer of the regulating valve at the key position of the valve port achieves the best effect, and an effective solution is provided for solving the sticking problem of the valve core of the regulating valve when working.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference33 articles.

1. Limin, Ma. et al. Application and development trend of regulating valve. Pipeline Technol. Equip. 2, 2 (2008).

2. B. Huang, S. Qiu, X. Li, Q. Wu, G. Wang. A review of transient flow structure and unsteady mechanism of cavitating flow. J. Hydrodyn. 31(3) (2019).

3. Lei, X. Study on Load Characteristics of Key Components of Regulating Valve (Harbin Engineering University, 2014).

4. Yuxuan, L. et al. Research progress of spool stuck. Mech. Electr. Eng. 39(7), 13 (2022).

5. Guowen, L. et al. Clamping force analysis of 2D electro-hydraulic proportional directional valve. China Mech. Eng. 26(15), 5 (2015).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3