Semi-classical Monte Carlo algorithm for the simulation of X-ray grating interferometry

Author:

Tessarini Stefan,Fix Michael Karl,Manser Peter,Volken Werner,Frei Daniel,Mercolli Lorenzo,Stampanoni Marco

Abstract

AbstractTraditional simulation techniques such as wave optics methods and Monte Carlo (MC) particle transport cannot model both interference and inelastic scattering phenomena within one framework. Based on the rules of quantum mechanics to calculate probabilities, we propose a new semi-classical MC algorithm for efficient and simultaneous modeling of scattering and interference processes. The similarities to MC particle transport allow the implementation as a flexible c++ object oriented extension of EGSnrc—a well-established MC toolkit. In addition to previously proposed Huygens principle based transport through optics components, new variance reduction techniques for the transport through gratings are presented as transport options to achieve the required improvement in speed and memory costs necessary for an efficient exploration (system design—dose estimations) of the medical implementation of X-ray grating interferometry (GI), an emerging imaging technique currently subject of tremendous efforts towards clinical translation. The feasibility of simulation of interference effects is confirmed in four academic cases and an experimental table-top GI setup. Comparison with conventional MC transport show that deposited energy features of EGSnrc are conserved.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3