Detection of butane and propane gases via C2N sensors: first principles modeling

Author:

Wasfi Asma,Sulieman Mawahib,Sefelnasr Ziad,Alteneiji Abdulla,Shafiqurrahman Atawulrahman,Alharairi Ammar,Awwad Falah

Abstract

AbstractGas sensing is a critical research area in aerospace, military, medical, and industrial environments, as it helps prevent risks to human health and the environment caused by toxic gases. Propane and butane, commonly used as fuels in household and industrial settings, are toxic and flammable gases that need to be effectively detected to avoid leakage or explosion accidents. To address this, nanomaterial-based gas sensors are being developed with low power consumption and operating temperatures. In this study, two-dimensional nitrogenated holey graphene (C2N) based sensors are used for the first time for the identification of butane and propane gases. The sensor consists of two C2N electrodes connected via a C2N channel. The C2N sensor design was enhanced by replacing the C2N electrodes with gold electrodes and adding a gate terminal under the channel. The resistive method is employed to detect butane and propane gases by measuring the variation in the electrical conductivity of the sensor due to exposure to these target molecules. To investigate the electronic transport properties, such as transmission spectra, density of states and current, first principles simulations of the C2N-based sensors is conducted using Quantumwise Atomistix Toolkit (ATK). The detection method relies on the alteration of the FET's electrical current at specific gate voltages due to the presence of these gases. This proposed sensor offers the potential for small size and low-cost gas sensing applications. The designed sensor aims to effectively detect propane and butane gases. By leveraging the unique properties of C2N and utilizing advanced simulation tools, this sensor could provide high sensitivity and accuracy in detecting propane and butane gases. Such an advancement in gas sensing technology holds significant promise for ensuring safety in various environments.

Funder

United Arab Emirates University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3