Author:
Machekano Honest,Zidana Chipo,Gotcha Nonofo,Nyamukondiwa Casper
Abstract
AbstractTropical organisms are more vulnerable to climate change and associated heat stress as they live close to their upper thermal limits (UTLs). UTLs do not only vary little across tropical species according to the basal versus plasticity ‘trade-off’ theory but may also be further constrained by low genetic variation. We tested this hypothesis, and its effects on ecosystem function using a diurnally active dung rolling beetle (telecoprid), Allogymnopleurus thalassinus (Klug, 1855) that inhabits arid environments. Specifically, (i) we tested basal heat tolerance (critical thermal maxima [CTmax] and heat knockdown time [HKDT]), and (ii) ecological functioning (dung removal) efficiency following dynamic chronic acclimation temperatures of variable high (VT-H) (28–45 °C) and variable low (VT-L) (28–16 °C). Results showed that A. thalassinus had extremely high basal heat tolerance (> 50 °C CTmax and high HKDT). Effects of acclimation were significant for heat tolerance, significantly increasing and reducing CTmax values for variable temperature high and variable temperature low respectively. Similarly, effects of acclimation on HKDT were significant, with variable temperature high significantly increasing HKDT, while variable temperature low reduced HKDT. Effects of acclimation on ecological traits showed that beetles acclimated to variable high temperatures were ecologically more efficient in their ecosystem function (dung removal) compared to those acclimated at variable low temperatures. Allogymnopleurus thalassinus nevertheless, had low acclimation response ratios, signifying limited scope for complete plasticity for UTLs tested here. This result supports the ‘trade-off’ theory, and that observed limited plasticity may unlikely buffer A. thalassinus against effects of climate change, and by extension, albeit with caveats to other tropical ecological service providing insect species. This work provides insights on the survival mechanisms of tropical species against heat and provides a framework for the conservation of these natural capital species that inhabit arid environments under rapidly changing environmental climate.
Publisher
Springer Science and Business Media LLC
Reference108 articles.
1. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report (Intergovernmental Panel on Climate Change, Geneva) p 52 (2014). https://www.ipcc.ch/report/ar5/wg2/
2. Easterling, D. R., Meehl, G. A., Parmesan, C., Karl, T. R. & Mearns, L. O. Climate extremes: Observations, modelling and impacts. Science 5487, 2068–2074 (2000).
3. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: Synthesis Report (Intergovernmental Panel on Climate Change, Geneva) p 52 (2007). https://www.ipcc.ch/report/ar5/syr/
4. Ju, R. T., Zhu, H. Y., Gao, L., Zhu, X. H. & Li, B. Increase in both temperature means, and extremes likely facilitates invasive herbivore outbreaks. Sci. Rep. 5, 15715. https://doi.org/10.1038/srep15715 (2015).
5. World Meteorological Organisation (WMO). State of the Climate in Africa. WMO-No. 1253. 2020. Available at: https://library.wmo.int/doc_num.php?explnum_id=10421. Accessed 12 September 2021.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献