Bonding of PMMA to silicon by femtosecond laser pulses

Author:

Capodacqua Filippo Maria Conte,Volpe Annalisa,Gaudiuso Caterina,Ancona Antonio

Abstract

AbstractMany devices and objects, from microelectronics to microfluidics, consist of parts made from dissimilar materials, such as different polymers, metals or semiconductors. Techniques for joining such hybrid micro-devices, generally, are based on gluing or thermal processes, which all present some drawbacks. For example, these methods are unable to control the size and shape of the bonded area, and present risks of deterioration and contamination of the substrates. Ultrashort laser bonding is a non-contact and flexible technique to precisely join similar and dissimilar materials, used both for joining polymers, and polymers to metallic substrates, but not yet for joining polymers to silicon. We report on direct transmission femtosecond laser bonding of poly(methyl methacrylate) (PMMA) and silicon. The laser process was performed by focusing ultrashort laser pulses at high repetition rate at the interface between the two materials through the PMMA upper layer. The PMMA-Si bond strength was evaluated as a function of different laser processing parameters. A simple, analytical, model was set up and used to determine the temperature of the PMMA during the bonding process. As a proof of concept, the femtosecond-laser bonding of a simple hybrid PMMA-Si microfluidic device has been successfully demonstrated through dynamic leakage tests.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3