Genomic footprints of bottleneck in landlocked salmon population

Author:

Subramanian Sankar,Kumar Manoharan

Abstract

AbstractAt the end of the last ice age, several Atlantic salmon populations got caught up in the lakes and ponds of the Northern Hemisphere. Occasionally, the populations also got locked when the flow of rivers terminated from reaching the sea due to land upheaval. Therefore, the pattern of evolution shaping the landlocked salmon populations is different from the other anadromous salmons, which migrate between the sea and rivers. According to the theories of population genetics, the effect of genetic drift is expected to be more pronounced in the former compared to the latter. Here we examined this using the whole genome data of landlocked and anadromous salmon populations of Norway. Our results showed a 50–80% reduction in the genomic heterozygosity in the landlocked compared to anadromous salmon populations. The number and total size of the runs of homozygosity (RoH) segments of landlocked salmons were two to eightfold higher than those of their anadromous counterparts. We found the former had a higher ratio of nonsynonymous-to-synonymous diversities than the latter. The investigation also revealed a significant elevation of homozygous deleterious Single Nucleotide Variants (SNVs) in the landlocked salmon compared to the anadromous populations. All these results point to a significant reduction in the population size of the landlocked salmons. This process of reduction might have started recently as the phylogeny revealed a recent separation of the landlocked from the anadromous population. Previous studies on terrestrial vertebrates observed similar signatures of a bottleneck when the populations from Island and the mainland were compared. Since landlocked waterbody such as ponds and lakes are geographically analogous to Islands for fish populations, the findings of this study suggest the similarity in the patterns of evolution between the two.

Funder

University of the Sunshine Coast

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3