Screen Printed Passives and Interconnects on Bio-Degradable Medical Hydrocolloid Dressing for Wearable Sensors

Author:

Alsuradi Haneen,Yoo JeraldORCID

Abstract

AbstractThe healthcare system is undergoing a noticeable transformation from a reactive, post-disease treatment to a preventive, predictive continuous healthcare. The key enabler for such a system is a pervasive wearable platform. Several technologies have been suggested and implemented as a wearable platform, but these technologies either lack reliability, manufacturing practicability or pervasiveness. We propose a screen-printed circuit board on bio-degradable hydrocolloid dressings, which are medically used and approved, as a platform for wearable biomedical sensors to overcome the aforementioned problems. We experimentally characterize and prepare the surface of the hydrocolloid and demonstrate high-quality screen-printed passive elements and interconnects on its surface using conductive silver paste. We also propose appropriate models of the thick-film screen-printed passives, validated through measurements and FEM simulations. We further elucidate on the usage of the hydrocolloid dressing by prototyping a Wireless Power Transfer (WPT) sensor and a humidity sensor using printed spiral inductors and interdigital capacitors, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3