Projected Streamflow in the Kurau River Basin of Western Malaysia under Future Climate Scenarios

Author:

Adib Muhammad Nasir Mohd,Rowshon Md KamalORCID,Mojid Md Abdul,Habibu Ismail

Abstract

AbstractClimate change-induced spatial and temporal variability of stremflow has significant implications for hydrological processes and water supplies at basin scale. This study investigated the impacts of climate change on streamflow of the Kurau River Basin in Malaysia using a Climate-Smart Decision Support System (CSDSS) to predict future climate sequences. For this, we used 25 reliazations consisting from 10 Global Climate Models (GCMs) and three IPCC Representative Concentration Pathways (RCP4.5, RCP6.0 and RCP8.5). The generated climate sequences were used as input to Soil and Water Assessment Tool (SWAT) to simulate projected changes in hydrological processes in the basin over the period 2021–2080. The model performed fairly well for the Kurau River Basin, with coefficient of determination (R2), Nash-Sutcliffe Efficiency (NSE) and Percent Bias (PBIAS) of 0.65, 0.65 and –3.0, respectively for calibration period (1981–1998) and 0.60, 0.59 and −4.6, respectively for validation period (1996–2005). Future projections over 2021–2080 period show an increase in rainfall during August to January (relatively wet season, called the main irrigation season) but a decrease in rainfall during February to July (relatively dry season, called the off season). Temperature projections show increase in both the maximum and minimum temperatures under the three RCP scenarios, with a maximum increase of 2.5 °C by 2021–2080 relative to baseline period of 1976–2005 under RCP8.5 scenario. The model predicted reduced streamflow under all RCP scenarios compared to the baseline period. Compared to 2021–2050 period, the projected streamflow will be higher during 2051–2080 period by 1.5 m3/s except in February for RCP8.5. The highest streamflow is predicted during August to December for both future periods under RCP8.5. The seasonal changes in streamflow range between –2.8% and –4.3% during the off season, and between 0% (nil) and –3.8% during the main season. The assessment of the impacts of climatic variabilities on the available water resources is necessary to identify adaptation strategies. It is supposed that such assessment on the Kurau River Basin under changing climate would improve operation policy for the Bukit Merah reservoir located at downstream of the basin. Thus, the predicted streamflow of the basin would be of importance to quantify potential impacts of climate change on the Bukit Merah reservoir and to determine the best possible operational strategies for irrigation release.

Funder

Universiti Putra Malaysia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference33 articles.

1. IWMI. Innovative Water Solutions for Sustainable Development; IWMI Strategy 2019–2023: Colombo, Sri Lanka. p. 36. (2019)

2. Dlamini, N. S. et al. Modeling potential impacts of climate change on streamflow using projections of the 5th assessment report for the Bernam river basin. Malaysia. Water (Switzerland) 9(3), 1–23 (2017).

3. Rajamoorthy, Y. & Munusamy, S. Rice industry in Malaysia: challenges, policies and implications. Procedia Economics and Finance 31, 861–867 (2015).

4. Sheehy, J. E. & Mitchell, P. Designing rice for the 21st century: the three laws of maximum yield. Discuss Paper Series 48, 19 (2013).

5. Lee, T. S., Haque, M. A. & Najim, M. Scheduling the cropping calendar in wet-seeded rice schemes in Malaysia. Agric. Water Manage. 71(1), 71–84 (2005).

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3