Improved phase-to-height mapping method combine with device attitude

Author:

Han Shuhuan,Yang Yanxi,Li Xinjie,Zhao Xubo,Zhang Xinyu

Abstract

AbstractPhase-to-height mapping is one of the important processes in three dimensional phase measurement profilometry. But, in traditional phase-to-height mapping method, the measurement accuracy is affected by device attitude, so it needs saving a large amount of mapping equations to achieve high-quality phase-to-height mapping. In order to improve that, this paper proposes an improved phase-to-height mapping method combine with device attitude. Firstly, we get the unwrapped phase of the target. Then, using generalized regression neural network is used to reduce the offset of phase information at the same height due to the randomness of device attitude. Last, the phase-to-height mapping is completed by substituting the unwrapped phase (the difference between having detected object and no detected object) of eliminate the offset into improved phase-to-height mapping method. Experimental results show that the proposed method could achieve high-quality phase-to-height mapping with less mapping equation and less memory space. Compared with the nonlinear phase-to-height mapping method (probabilistic neural network to eliminate phase offset), its accuracy is improved by 44.30%. Compared with the nonlinear phase-to-height mapping method (radial basis function neural network to eliminate phase offset), the accuracy is improved by 39.58%.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3