Environment random interaction of rime optimization with Nelder-Mead simplex for parameter estimation of photovoltaic models

Author:

Shi Jinge,Chen Yi,Heidari Ali Asghar,Cai Zhennao,Chen Huiling,Chen Yipeng,Liang Guoxi

Abstract

AbstractAs countries attach importance to environmental protection, clean energy has become a hot topic. Among them, solar energy, as one of the efficient and easily accessible clean energy sources, has received widespread attention. An essential component in converting solar energy into electricity are solar cells. However, a major optimization difficulty remains in precisely and effectively calculating the parameters of photovoltaic (PV) models. In this regard, this study introduces an improved rime optimization algorithm (RIME), namely ERINMRIME, which integrates the Nelder-Mead simplex (NMs) with the environment random interaction (ERI) strategy. In the later phases of ERINMRIME, the ERI strategy serves as a complementary mechanism for augmenting the solution space exploration ability of the agent. By facilitating external interactions, this method improves the algorithm’s efficacy in conducting a global search by keeping it from becoming stuck in local optima. Moreover, by incorporating NMs, ERINMRIME enhances its ability to do local searches, leading to improved space exploration. To evaluate ERINMRIME's optimization performance on PV models, this study conducted experiments on four different models: the single diode model (SDM), the double diode model (DDM), the three-diode model (TDM), and the photovoltaic (PV) module model. The experimental results show that ERINMRIME reduces root mean square error for SDM, DDM, TDM, and PV module models by 46.23%, 59.32%, 61.49%, and 23.95%, respectively, compared with the original RIME. Furthermore, this study compared ERINMRIME with nine improved classical algorithms. The results show that ERINMRIME is a remarkable competitor. Ultimately, this study evaluated the performance of ERINMRIME across three distinct commercial PV models, while considering varying irradiation and temperature conditions. The performance of ERINMRIME is superior to existing similar algorithms in different irradiation and temperature conditions. Therefore, ERINMRIME is an algorithm with great potential in identifying and recognizing unknown parameters of PV models.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3