Evaluating sea cucumbers as extractive species for benthic bioremediation in mussel farms

Author:

Grosso Luca,Rampacci Massimo,Pensa Davide,Fianchini Alessandra,Batır Esin,Aydın İlhan,Ciriminna Laura,Felix Pedro M.,Pombo Ana,Lovatelli Alessandro,Vizzini Salvatrice,Scardi Michele,Rakaj Arnold

Abstract

AbstractFilter-feeding mussels blend suspended particles into faeces and pseudo-faeces enhancing organic matter flows between the water column and the bottom, and strengthening benthic-pelagic coupling. Inside operating farms, high bivalve densities in relatively confined areas result in an elevated rate of organic sinking to the seabed, which may cause a localized impact in the immediate surrounding. Deposit-feeding sea cucumbers are potentially optimal candidates to bioremediate mussel organic waste, due to their ability to process organic-enriched sediments impacted by aquaculture waste. However, although the feasibility of this polyculture has been investigated for a few Indo-Pacific species, little is known about Atlanto-Mediterranean species. Hence, for the first time, in the present study, we conducted a comparative investigation on the suitability of different Mediterranean sea cucumber species, to be reared in Integrated Multitrophic Aquaculture (IMTA) with mussels. A pilot-scale experiment was accomplished operating within a mussel farm where two sea cucumbers species,Holothuria tubulosaandHolothuria polii, were caged beneath the long-line mussel farm ofMytilus galloprovincialis. After four months,H. tubulosashowed high survivorship (94%) and positive somatic growth (6.07%); converselyH. poliishowed negative growth (− 25.37%), although 92% of specimens survived. Furthermore, sea cucumber growth was size-dependent. In fact, smaller individuals, independently from the species, grew significantly faster than larger ones. These results evidenced a clear difference in the suitability of the two sea cucumber species for IMTA withM. galloprovincialis, probably due to their different trophic ecology (feeding specialization on different microhabitats, i.e. different sediment layers). Specifically,H. tubulosaseems to be an optimal candidate as extractive species both for polycultures production and waste bioremediation inM. galloprovincialisoperating farms.

Funder

Regione Puglia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3