Finding mesopelagic prey in a changing Southern Ocean

Author:

McMahon Clive R.ORCID,Hindell Mark A.ORCID,Charrassin Jean-Benoit,Corney StuartORCID,Guinet Christophe,Harcourt RobertORCID,Jonsen IanORCID,Trebilco Rowan,Williams Guy,Bestley Sophie

Abstract

AbstractMesopelagic fish and squid occupy ocean depths extending below the photic zone and their vertical migrations represent a massive pathway moving energy and carbon through the water column. Their spatio-temporal distribution is however, difficult to map across remote regions particularly the vast Southern Ocean. This represents a key gap in understanding biogeochemical processes, marine ecosystem structure, and how changing ocean conditions will affect marine predators, which depend upon mesopelagic prey. We infer mesopelagic prey vertical distribution and relative abundance in the Indian sector of the Southern Ocean (20° to 130°E) with a novel approach using predator-derived indices. Fourteen years of southern elephant seal tracking and dive data, from the open ocean between the Antarctic Polar Front and the southern Antarctic Circumpolar Current front, clearly show that the vertical distribution of mesopelagic prey is influenced by the physical hydrographic processes that structure their habitat. Mesopelagic prey have a more restricted vertical migration and higher relative abundance closer to the surface where Circumpolar Deep Water rises to shallower depths. Combining these observations with a future projection of Southern Ocean conditions we show that changes in the coupling of surface and deep waters will potentially redistribute mesopelagic prey. These changes are small overall, but show important spatial variability: prey will increase in relative abundance to the east of the Kerguelen Plateau but decrease to the west. The consequences for deep-diving specialists such as elephant seals and whales over this time scale will likely be minor, but the changes in mesoscale vertical energy flow have implications for predators that forage within the mesopelagic zone as well as the broader pelagic ecosystem.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3