Author:
Müller Claudia Damaris,Ruiz-Gómez Gloria,Cazzonelli Sophie,Möller Stephanie,Wodtke Robert,Löser Reik,Freyse Joanna,Dürig Jan-Niklas,Rademann Jörg,Hempel Ute,Pisabarro M. Teresa,Vogel Sarah
Abstract
AbstractTransglutaminases (TGs) catalyze the covalent crosslinking of proteins via isopeptide bonds. The most prominent isoform, TG2, is associated with physiological processes such as extracellular matrix (ECM) stabilization and plays a crucial role in the pathogenesis of e.g. fibrotic diseases, cancer and celiac disease. Therefore, TG2 represents a pharmacological target of increasing relevance. The glycosaminoglycans (GAG) heparin (HE) and heparan sulfate (HS) constitute high-affinity interaction partners of TG2 in the ECM. Chemically modified GAG are promising molecules for pharmacological applications as their composition and chemical functionalization may be used to tackle the function of ECM molecular systems, which has been recently described for hyaluronan (HA) and chondroitin sulfate (CS). Herein, we investigate the recognition of GAG derivatives by TG2 using an enzyme-crosslinking activity assay in combination with in silico molecular modeling and docking techniques. The study reveals that GAG represent potent inhibitors of TG2 crosslinking activity and offers atom-detailed mechanistic insights.
Funder
Graduate Academy Technische Universität Dresden
Deutsche Forschungsgemeinschaft
Technische Universität Dresden
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献