Frequency-domain CBE imaging for ultrasound localization of the HIFU focal spot: a feasibility study

Author:

Yang Kun,Li Qiang,Liu Hao-LiORCID,Chen Chin-KuoORCID,Huang Cheng-Wei,Chen Jheng-Ru,Tsai Yu-Wei,Zhou Zhuhuang,Tsui Po-Hsiang

Abstract

AbstractHigh-intensity focused ultrasound (HIFU) is a well-accepted tool for noninvasive thermal therapy. To control the quality of HIFU treatment, the focal spot generated in tissues must be localized. Ultrasound imaging can monitor heated regions; in particular, the change in backscattered energy (CBE) allows parametric imaging to visualize thermal information in the tissue. Conventional CBE imaging constructed in the spatial domain may be easily affected by noises when the HIFU focal spot is visualized. This study proposes frequency-domain CBE imaging to improve noise tolerance and image contrast in HIFU focal spot monitoring. Phantom experiments were performed in a temperature-controlled environment. HIFU of 2.12 MHz was applied to the phantoms, during which a clinical scanner equipped with a 3-MHz convex array transducer was used to collect raw image data consisting of backscattered signals for B-mode, spatial-, and frequency-domain CBE imaging. Concurrently, temperature changes were measured at the focal spot using a thermocouple for comparison with CBE values by calculating the correlation coefficient r. To further analyze CBE image contrast levels, a contrast factor was introduced, and an independent t-test was performed to calculate the probability value p. Experimental results showed that frequency-domain CBE imaging performed well in thermal distribution visualization, enabling quantitative detection of temperature changes. The CBE value calculated in the frequency domain also correlated strongly with that obtained using the conventional spatial-domain approach (r = 0.97). In particular, compared with the image obtained through the conventional method, the contrast of the CBE image obtained using the method based on frequency-domain analysis increased by 2.5-fold (4 dB; p < 0.05). Frequency-domain computations may constitute a new strategy when ultrasound CBE imaging is used to localize the focal spot in HIFU treatment planning.

Funder

The Ministry of Science and Technology in Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3