Adsorptive colorimetric determination of chromium(VI) ions at ultratrace levels using amine functionalized mesoporous silica

Author:

Ghosh Rajesh,Gopalakrishnan Saranya,Renganathan T.,Pushpavanam S.

Abstract

AbstractThere is an urgent need for a rapid, affordable and sensitive analytical method for periodic monitoring of heavy metals in water bodies. Herein, we report for the first time a versatile method for ultratrace level metal detection based on colorimetric sensing. The method integrates preconcentration using a nanomaterial with a colorimetric assay performed directly on the metal-enriched nanomaterial surface. This method circumvents the need for tedious sample pre-processing steps and the complex development of colorimetric probes, thereby reducing the complexity of the analytical procedure. The efficacy of the proposed method was demonstrated for chromium(VI) ions detection in water samples. Amine functionalized mesoporous silica (AMS) obtained from a one-pot synthesis was utilized as a pre-concentration material. The structural and chemical analysis of AMS was conducted to confirm its physico-chemical properties. The pre-concentration conditions were optimized to maximise the colorimetric signal. AMS exhibited a discernible colour change from white to purple (visible to the naked eye) for trace Cr(VI) ions concentration as low as 0.5 μg L−1. This method shows high selectivity for Cr(VI) ions with no colorimetric signal from other metal ions. We believe our method of analysis has a high scope for de-centralized monitoring of organic/inorganic pollutants in resource-constrained settings.

Funder

Department of Science and Technology, Ministry of Science and Technology, India

National Environment Research Council

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3