On the Effects of Mechanical Stress of Biological Membranes in Modeling of Swelling Dynamics of Biological Systems

Author:

Khmelinskii Igor,Makarov Vladimir I.

Abstract

AbstractWe highlight mechanical stretching and bending of membranes and the importance of membrane deformations in the analysis of swelling dynamics of biological systems, including cells and subcellular organelles. Membrane deformation upon swelling generates tensile stress and internal pressure, contributing to volume changes in biological systems. Therefore, in addition to physical (internal/external) and chemical factors, mechanical properties of the membranes should be considered in modeling analysis of cellular swelling. Here we describe an approach that considers mechanical properties of the membranes in the analysis of swelling dynamics of biological systems. This approach includes membrane bending and stretching deformations into the model, producing a more realistic description of swelling. We also discuss the effects of membrane stretching on swelling dynamics. We report that additional pressure generated by membrane bending is negligible, compared to pressures generated by membrane stretching, when both membrane surface area and volume are variable parameters. Note that bending deformations are reversible, while stretching deformation may be irreversible, leading to membrane disruption when they exceed a certain threshold level. Therefore, bending deformations need only be considered in reversible physiological swelling, whereas stretching deformations should also be considered in pathological irreversible swelling. Thus, the currently proposed approach may be used to develop a detailed biophysical model describing the transition from physiological to pathological swelling mode.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference45 articles.

1. Jakobsson, E. Interactions of cell volume, membrane potential, and membrane transport parameters. Am. J. Physiol. 238, C196–206, https://doi.org/10.1152/ajpcell.1980.238.5.C196 (1980).

2. Kay, A. R. How cells can control their size by pumping ions. Front. Cell & Develop. Biol. 5, 41, https://doi.org/10.3389/fcell.2017.00041 (2017).

3. Knocikova, J. A., Bouret, Y., Argentina, A. & Counillon, L. Mathematical modeling of cell volume alterations under different osmotic conditions. Biophysics and Medical Physics Computing 8, 1164–1168 (2015).

4. Raspaud, E., da Conceicao, M. & Livolant, F. Do free DNA counterions control the osmotic pressure? Phys. Rev. Lett. 84, 2533–2536, https://doi.org/10.1103/PhysRevLett.84.2533 (2000).

5. Somjen, G. G. Ions in the brain: normal function, seizures, and stroke. ISBN: 9780195151718 (Oxford University Press, 2004).

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3