An origami-based technique for simple, effective and inexpensive fabrication of highly aligned far-field electrospun fibers

Author:

Hosseinian Hamed,Jimenez-Moreno Martin,Sher Mazhar,Rodriguez-Garcia Aida,Martinez-Chapa Sergio O.,Hosseini Samira

Abstract

AbstractFabrication of highly aligned fibers by far-field electrospinning is a challenging task to accomplish. Multiple studies present advances in the alignment of electrospun fibers which involve modification of the conventional electrospinning setup with complex additions, multi-phased fabrication, and expensive components. This study presents a new collector design with an origami structure to produce highly-aligned far-field electrospun fibers. The origami collector mounts on the rotating drum and can be easily attached and removed for each round of fiber fabrication. This simple, effective, and inexpensive technique yields high-quality ultra-aligned fibers while the setup remains intact for other fabrication types. The electrospun poly(ɛ-caprolactone) (PCL) fibers were assessed by scanning electron microscope (SEM), fiber diameter distribution, water contact angle (WCA), Fast Fourier Transform analysis (FFT), surface plot profile, and pixel intensity plots. We thoroughly explored the impact of influential parameters, including polymer concentration, injection rate, collector rotation speed, distance from the collector to the tip, and needle gauge number on fibers’ quality and alignment. Moreover, we employed machine learning algorithms to predict the outcomes and classify the high-quality fibers instead of low-quality productions.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3