Effects of dialkoxybenzenes against Varroa destructor and identification of 1-allyloxy-4-propoxybenzene as a promising acaricide candidate

Author:

Dawdani Soniya,O’Neill Marissa,Castillo Carlos,Sámano Jorge E. Macias,Higo Heather,Ibrahim Abdullah,Pernal Stephen F.,Plettner Erika

Abstract

AbstractThe honey bee is responsible for pollination of a large proportion of crop plants, but the health of honey bee populations has been challenged by the parasitic mite Varroa destructor. Mite infestation is the main cause of colony losses during the winter months, which causes significant economic challenges in apiculture. Treatments have been developed to control the spread of varroa. However, many of these treatments are no longer effective due to acaricide resistance. In a search of varroa-active compounds, we tested the effect of dialkoxybenzenes on the mite. A structure–activity relationship revealed that 1-allyloxy-4-propoxybenzene is most active of a series of dialkoxybenzenes tested. We found that three compounds (1-allyloxy-4-propoxybenzene, 1,4-diallyloxybenzene and 1,4-dipropoxybenzene) cause paralysis and death of adult varroa mites, whereas the previously discovered compound, 1,3-diethoxybenzene, which alters host choice of adult mites in certain conditions, did not cause paralysis. Since paralysis can be caused by inhibition of acetylcholinesterase (AChE), a ubiquitous enzyme in the nervous system of animals, we tested dialkoxybenzenes on human, honey bee and varroa AChE. These tests revealed that 1-allyloxy-4-propoxybenzene had no effects on AChE, which leads us to conclude that 1-allyloxy-4-propoxybenzene does not exert its paralytic effect on mites through AChE. In addition to paralysis, the most active compounds affected the ability of the mites to find and remain at the abdomen of host bees provided during assays. A test of 1-allyloxy-4-propoxybenzene in the field, during the autumn of 2019 in two locations, showed that this compound has promise in the treatment of varroa infestations.

Funder

Agriculture and Agri-Food Canada

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3