Abstract
AbstractResistive switching (RS) devices have attracted increasing attention for artificial synapse applications in neural networks because of their nonvolatile and analogue resistance changes. Among the neural networks, a spiking neural network (SNN) based on spike-timing-dependent plasticity (STDP) is highly energy efficient. To implement STDP in resistive switching devices, several types of voltage spikes have been proposed to date, but there have been few reports on the relationship between the STDP characteristics and spike types. Here, we report the STDP characteristics implemented in ferroelectric tunnel junctions (FTJs) by several types of spikes. Based on simulated time evolutions of superimposed spikes and taking the nonlinear current-voltage (I-V) characteristics of FTJs into account, we propose equations for simulating the STDP curve parameters of a magnitude of the conductance change (ΔGmax) and a time window (τC) from the spike parameters of a peak amplitude (Vpeak) and time durations (tp and td) for three spike types: triangle-triangle, rectangular-triangle, and rectangular-rectangular. The power consumption experiments of the STDP revealed that the power consumption under the inactive-synapse condition (spike timing |Δt| > τC) was as large as 50–82% of that under the active-synapse condition (|Δt| < τC). This finding indicates that the power consumption under the inactive-synapse condition should be reduced to minimize the total power consumption of an SNN implemented by using FTJs as synapses.
Publisher
Springer Science and Business Media LLC
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献