Sickle-shaped high gain and low profile based four port MIMO antenna for 5G and aeronautical mobile communication

Author:

Armghan Ammar,Lavadiya Sunil,Udayaraju Pamula,Alsharari Meshari,Aliqab Khaled,Patel Shobhit K.

Abstract

AbstractThe construction of the four-port MIMO antenna in the form of a sickle is provided in the article. Initially, the single port element is designed and optimized. Next, a structure with two ports is created, and lastly, a design with four ports is completed. This process is repeated until the design is optimized. Three types of parametric analysis are considered, including variations in length, widths of sickle-shaped patches, and varying sizes of DGS. The frequency range of 2–8 GHz is used for structural investigation. The − 18.77 dB of return loss was observed at 3.825 GHz for a single-element structure. The optimized one-port structure provides a return loss of − 19.79 dB at 3.825 GHz. The port design offers a bandwidth of 0.71 GHz (3.515–4.225). The four-port design represents two bands that are observed at 3 GHz and 5.43 GHz. Both bands provide the return loss at respectively − 19.79 dB and − 20.53 dB with bandwidths of 1.375 GHz (2.14–3.515) and 0.25 GHz (5.335–5.585). The healthy isolation among both transmittance and reflectance response is achieved. The low-profile material was used to create the design that was presented. The article includes a comparison of the findings that were measured and those that were simulated. The four-port design that has been shown offers a total gain of 15.93 dB, a peak co-polar value of 5.46 dB, a minimum return loss of − 20.53 dB, a peak field distribution of 46.43 A/m and a maximum bandwidth of 1.375 GHz. The values for all diversity parameters like ECC are near zero, the Negative value of TARC, Near to zero MEG, DG is almost 10 dB, and a zero value of CCL is achieved. All diversity parameter performance is within the allowable range. The design is well suited for 5G and aeronautical mobile communication applications.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3