Microbiome and transcriptome analyses reveal the influence of calcined dolomite application on Eriocheir sinensis in a rice–crab co-culture system

Author:

Li Yingdong,Li Lishong,Miao Wei,Li Xiaodong

Abstract

AbstractCo-culture systems of rice and aquatic animals can contribute to the ecological intensification of agriculture by reducing nutrient loss and the need for N fertilizer application and by enhancing nutrient-use efficiency. However, the input of high-protein diets into paddy fields, to facilitate the growth of aquatic animals, has been found to increase N pollution and acidification of the soil. Although soil amendments have been widely used to ameliorate acidic soils, reduce N2O emissions, and improve agronomic production, the relationship between soil amendments and aquatic animal remains unclear. Therefore, this study investigated the effects of calcined dolomite (hereafter referred to as dolomite) as an acidic soil amendment and Ca–Mg supplement in rice–crab co-culture using Eriocheir sinensis crabs (Chinese mitten crabs). High-throughput sequencing was used to examine crab bacterial community composition and crab hepatopancreas biology. Although the water pH was significantly increased in the dolomite group, the number, composition, and diversity of bacteria identified in crab gut microbiome did not vary significantly between the dolomite and control groups. In the dolomite group, the probiotic agents Candidatus Hepatoplasma and Lactobacillus were highly abundant in the crab gut, and immune- and retinol metabolism-related genes were significantly upregulated in the crab hepatopancreas. Overall, dolomite application increased crab health and water pH. Dolomite is a low-cost amendment, with better stability, compared to other soil amendments, thus making it ideal for sustainable and clean rice–aquatic animal co-culture.

Funder

the Liaoning Provincial Open Competition Mechanism to Select the Best Candidates Project

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3