Silicon nanorod formation from powder feedstock through co-condensation in plasma flash evaporation and its feasibility for lithium-ion batteries

Author:

Tanaka Akihiro,Ohta Ryoshi,Dougakiuchi Masashi,Tanaka Toshimi,Takeuchi Akira,Fukuda Kenichi,Kambara Makoto

Abstract

AbstractSi nanowires/nanorods are known to enhance the cycle performance of the lithium-ion batteries. However, viable high throughput production of Si nanomaterials has not yet attained as it requires in general expensive gas source and low-rate and multiple-step approach. As one of the potential approaches, in this work, we report the fast-rate Si nanorod synthesis from low-cost powder source by the modified plasma flash evaporation and the fundamental principle of structural formation during gas co-condensation. In this process, while Si vapors are formed in high temperature plasma jet, molten copper droplets are produced separately at the low temperature region as catalysts for growth of silicon nanorods. Si rods with several micrometers long and a few hundred of nanometers in diameter were produced in a single process at rates up to 40 µm s−1. The growth of the Si nanorods from powder source is primarily characterized by the vapor–liquid–solid growth which is accelerated by the heat extraction at the growth point. The battery cells with the Si nanorods as the anode have shown that a higher capacity and better cyclability is achieved for the nanorods with higher aspect ratios.

Funder

SOLiD-EV project

Strategic Core Technology Advancement Program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3