Genetic insights into agronomic and morphological traits of drug-type cannabis revealed by genome-wide association studies

Author:

de Ronne Maxime,Lapierre Éliana,Torkamaneh Davoud

Abstract

AbstractCannabis sativa L., previously concealed by prohibition, is now a versatile and promising plant, thanks to recent legalization, opening doors for medical research and industry growth. However, years of prohibition have left the Cannabis research community lagging behind in understanding Cannabis genetics and trait inheritance compared to other major crops. To address this gap, we conducted a comprehensive genome-wide association study (GWAS) of nine key agronomic and morphological traits, using a panel of 176 drug-type Cannabis accessions from the Canadian legal market. Utilizing high-density genotyping-by-sequencing (HD-GBS), we successfully generated dense genotyping data in Cannabis, resulting in a catalog of 800 K genetic variants, of which 282 K common variants were retained for GWAS analysis. Through GWAS analysis, we identified 18 markers significantly associated with agronomic and morphological traits. Several identified markers exert a substantial phenotypic impact, guided us to putative candidate genes that reside in high linkage-disequilibrium (LD) with the markers. These findings lay a solid foundation for an innovative cannabis research, leveraging genetic markers to inform breeding programs aimed at meeting diverse needs in the industry.

Funder

Fuga Group Inc. and NSERC Alliance

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3