Abstract
AbstractWe investigated the potential of machine learning for diagnostic classification in late-life major depression based on an advanced whole brain white matter segmentation framework. Twenty-six late-life depression and 12 never depressed individuals aged > 55 years, matched for age, MMSE, and education underwent brain diffusion tensor imaging and a multi-contrast, multi-atlas segmentation in MRIcloud. Fractional anisotropy volume, mean fractional anisotropy, trace, axial and radial diffusivity (RD) extracted from 146 white matter parcels for each subject were used to train and test the AdaBoost classifier using stratified 12-fold cross validation. Performance was evaluated using various measures. The statistical power of the classifier was assessed using label permutation test. Statistical analysis did not yield significant differences in DTI measures between the groups. The classifier achieved a balanced accuracy of 71% and an Area Under the Receiver Operator Characteristic Curve (ROC-AUC) of 0.81 by trace, and a balanced accuracy of 70% and a ROC-AUC of 0.80 by RD, in limbic, cortico-basal ganglia-thalamo-cortical loop, brainstem, external and internal capsules, callosal and cerebellar structures. Both indices shared important structures for classification, while fornix was the most important structure for classification by both indices. The classifier proved statistically significant, as trace and RD ROC-AUC scores after permutation were lower than those obtained with the actual data (P = 0.022 and P = 0.024, respectively). Similar results were obtained with the Gradient Boosting classifier, whereas the RBF-kernel Support Vector Machine with k-best feature selection did not exceed the chance level. Finally, AdaBoost significantly predicted the class using all features together. Limitations are discussed. The results encourage further investigation of the implemented methods for computer aided diagnostics and anatomically informed therapeutics.
Publisher
Springer Science and Business Media LLC
Reference57 articles.
1. Allan, C. E., Ebmeier, K. B. & Valkanova, V. Depression in older people is underdiagnosed. Practitioner 58(1771), 19–23 (2014).
2. Byers, A. L. & Yaffe, K. Depression and risk of developing dementia. Nat. Rev. Neurol. 7(6), 323–331 (2011).
3. Robinson, A. C. et al. Mid to late-life scores of depression in the cognitively healthy are associated with cognitive status and Alzheimer’s disease pathology at death. Int. J. Geriatr. Psychiatry 36(5), 713–721. https://doi.org/10.1002/gps.5470 (2021).
4. Smagula, S. F. & Aizenstein, H. J. Brain structural connectivity in late-life major depressive disorder. Biol. Psychiatry Cognit. Neurosci. Neuroimag. 1(3), 271–277 (2016).
5. Khundakar, A. A. & Thomas, A. J. Cellular morphometry in late-life depression: A review of postmortem studies. Am. J. Geriatric Psychiatry 22(2), 122–132 (2014).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献